

Gradient of $L_{1} = -\frac{2}{3}$ Gradient of $L_2 = \frac{8-2}{2+2} = \frac{3}{2}$ $m_{L1} \times m_{L2} = -1$:. The lines are perpendicular

PARKERMATHS.COM

Midpoint =
$$(-1, 4)$$

Gradient: $m = \frac{5-3}{2-4} = \frac{1}{3}$
 $\therefore m_{\perp} = -3$
Equation: $y - 4 = -3(x + 1)$
 $y + 3x = 1$

PARKERMATHS.COM

grad of radius =
$$\frac{4}{3}$$

grad of tangent = $-\frac{3}{4}$
 $y - 1 = -\frac{3}{4}(x - 8)$
 $3x + 4y = 28$
Note: Can also be done with implicit
differentiation

$$m_{AC} = \frac{11 - 10}{0 - (-7)} = \frac{1}{7}$$

$$m_{BC} = \frac{11 - 4}{0 - 1} = -7$$

$$m_{AC} \times m_{BC} = -1 \implies AC \text{ and } BC \text{ are}$$

$$\angle ACB = 90^{\circ}, \text{ so } AB \text{ is the diameter.}$$
PARKERMATHS.COM

 $(x-a)^2 + (y-b)^2 = r^2$

PARKERMATHS.COM

 \checkmark

(a)
$$m_1 = m_2$$
 (parallel)
(b) $m_1 \times m_2 = -1$ (perpendicular)

 $y - y_1 = m(x - x_1)$

PARKERMATHS.COM

(a) Gradient =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

(b) $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
(c) Midpoint = $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

PARKERMATHS.COM

PARKERMATHS.COM

Technique Determine if these circles intersect: C_1 : $(x - 10)^2 + (y - 12)^2 = 9$ C_2 : $x^2 + y^2 - 10x - 14y + 58 = 0$	Points A(-7,10), B(1,4) and C(0,11) lie on a circle. Show that AB is the diameter of the circle.	(2) L_1 has equation $2x + 3y = 7$ L_2 passes through (-2,2) and (2,8) Show that the lines are perpendicular.
(?) Key Fact	(?) Key Fact	(?) Technique
Equation of a straight line with gradient m passing through (x_1, y_1) .	Equation of a circle with centre (<i>a</i> , <i>b</i>), radius <i>r</i> .	Given two points (2,5) and (–4,3) Equation of perpendicular bisector in the form <i>ax</i> + <i>by</i> = c
🕅 105 AS-C4	∑ 10s AS-C5	₩ 455 AS-C6
 (a) Gradient = (b) Distance between points = (c) Midpoint = 	 Two lines with gradients m₁ and m₂ are (a) Parallel if (b) Perpendicular if 	(?) $x^{2} + y^{2} - 10x + 6y + 9 = 0$ Equation of tangent at (8, 1) in the form $ax + by = c$

O Use your calculator to Technique factorise the following: (a) $x^3 - 4x^2 - 11x + 30$ (b) $6x^3 + 23x^2 - 6x - 8$ \overleftrightarrow{O} 755 AS-CALC1	 Solve the following Technique using your calculator: (a) 2x + 5y = -3, y - 2x = -2 (b) 5 + 1.5x = 2.5y, 6 - 2.2y = 3x 75s AS-CALC2 	Convert between the Convert between the following units: $5 \text{ kmh}^{-1} = \dots \text{ ms}^{-1}$ $50 000 \text{ cm}^3 = \dots \text{ L}$ $\overrightarrow{S} 605$ AS-CALC3
 (a) Use your calculator sketch: y = sin 2x cos x , 0° ≤ x ≤ 360° (b) Find the x-coordinates of the local maxima to 1 d.p. ∞ 60s AS-CALC4 	Use your calculator to Technique evaluate the following: (a) ${}^{8}C_{3} =$ (b) $\log_{2} 5 =$ (c) $7! =$ AS-CALCS	Use your calculator to evaluate the following: (a) $\sqrt[4]{7} \times 8\frac{7}{15} =$ (b) $\sin^2(-35^\circ) =$ AS-CALCE
Ise your calculator to Technique evaluate the following: (a) $\frac{3}{\frac{4}{5}} = \dots$ (b) $\frac{\frac{3}{4}}{5} = \dots$ AS-CALC7	\overrightarrow{C} Use your calculator to solve $\cos^{2} x = \frac{2}{5} , 360^{\circ} < x < 720^{\circ}$ Give solutions to 3 s.f. \overrightarrow{C} \overrightarrow{C} \overrightarrow{C} \overrightarrow{C}	$ \widehat{ S } Evaluate the following Technique using your calculator: (a) \frac{d}{dx} (5x^2 - \sqrt{x}) \Big _{x=9} = (b) \int_{0}^{4} (5x^2 - \sqrt{x}) dx = \widehat{ S } + 55 AS-CALC9$

$$\int \sin x = \sin(180^{\circ} - x)$$

$$\cos x = \cos(360^{\circ} - x)$$

$$\sin x = \frac{4}{5}, \tan x = -\frac{4}{3}$$

$$\int \sin x = \frac{4}{5}, \tan x = -\frac{4}{3}$$

$$\int \sin x = \frac{4}{5}, \tan x = -\frac{4}{3}$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \cos x = \frac{\sqrt{5}}{3}, \tan x = \frac{2}{\sqrt{5}}$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\cos x = \cos(x \pm 360^{\circ})$$

$$\cos x = \cos(x \pm 360^{\circ})$$

$$\cos x = \tan(x \pm 180^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \tan(x \pm 180^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \tan(x \pm 180^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \tan(x \pm 180^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \tan(x \pm 180^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \tan(x \pm 180^{\circ})$$

$$\int \sin x = \sin(x \pm 360^{\circ})$$

$$\int \sin x = \sin(x \pm$$

PARKERMATHS.COM

i

PARKERMATHS.COM

PARKERMATHS.COM

-1

(a)
$$\log_a b = c \iff a^c = b$$

(b) $\log_2 2 = 1$
(c) $\log_2 16 = 4$

$$\begin{aligned}
& \log_a x + \log_a y = \log_a (xy) \\
& \log_a x - \log_a y = \log_a \left(\frac{x}{y}\right) \\
& \log_a x^n = n\log_a x
\end{aligned}$$

PARKERMATHS.COM

$$y = ab^{x}$$

$$\log y = \log(ab^{x})$$

$$\log y = \log a + \log b^{x}$$

$$\log y = \log a + x \log b$$

PARKERMATHS.COM

1

PARKERMATHS.COM

PARKERMATHS.COM

 \checkmark

|| PARKERMATHS.COM

RMATHS.COM

(a)
$$\frac{dy}{dx} < O$$

(b) $\frac{dy}{dx} > O$
(c) $\frac{dy}{dx} = O$

$$\frac{dy}{dx} = 2x + 4$$
(a) $\frac{dy}{dx}\Big|_{x=3} = 2(3) + 4 = 10$
(b) $2x + 4 = 3$
 $x = -\frac{1}{2}$

PARKERMATHS.COM

f'(x)

(a)
$$4x^{3} + \frac{3}{2}x^{-\frac{1}{2}} - 3x^{-4}$$

(b) $\frac{1}{3}x^{-\frac{2}{3}} - \frac{1}{4}x^{-\frac{3}{2}} - \frac{12}{5}x^{-\frac{8}{5}}$

 $2^{\times} \ln 2$

PARKERMATHS.COM

 \checkmark

PARKERMATHS.COM

$$=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 - 3x^2}{h}$$
$$= \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 3x^2}{h}$$
$$= \lim_{h \to 0} \frac{6xh + 3h^2}{h}$$
$$= \lim_{h \to 0} (6x - 3h)$$
$$= 6x$$

 $\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$

(a) $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$ (b) $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$

> (a) e^{x} (b) $4e^{4x}$ (c) $-\frac{1}{2}e^{-\frac{1}{2}x}$

 \checkmark

PARKERMATHS.COM

 \checkmark

 \checkmark

 \checkmark

PARKERMATHS.COM

PARKERMATHS.COM

PARKERMATHS.COM

PARKERMATHS.COM

?	Key Fact	?	Key Fact 🔅	Key Fact
(a) Criteria for a minimu	m point.	d	(a	a) Criteria for a decreasing function.
(b) Criteria for a maximu	ım point.	$\frac{d}{dx}2^{*} =$	= (b	b) Criteria for an increasing function.
			(c	c) Criteria for a stationary point.
🖑 1.5s	AS-G1	🕅 10s	AS-G2	15s AS-G3
(a) $\frac{d}{dx}e^x = \dots$	Key Fact	(a) $\frac{d}{dx} \left(x^4 + 3\sqrt{x} \right)$	$\left[\frac{1}{y}\right] = \dots$	$= \chi^{2} + 4\chi - 3$
(b) $\frac{d}{dx}e^{4x} = \dots$			(a)	Find the value of $\frac{dy}{dx}$ at $x = 3$
$(c) \frac{d}{dx}e^{-\frac{1}{2}x} =$		(b) $\frac{d}{dx}\left(x^{\frac{2}{3}}+\frac{1}{2\sqrt{x}}\right)$	$= + \frac{4}{x^{\frac{3}{5}}} = \dots $ (b)	Find the x-coordinate when $\frac{dy}{dx} = 3$
🕎 15s	AS-G4	🕎 60s	AS-G5 🕅 1	1m 30s AS-G6
?	Key Fact	?	Technique 🔅	Key Fact
Relationship betw	reen	f(x) = 3	X ²	Formula for differentiation
$\frac{dy}{dx} \text{ and } \frac{dx}{dy}$		Find f'(x) from fir	rst principles.	from first principles.
₩ 5s	AS-G7	🖏 60s	AS-G8 🖏 1	10s AS-G9

Correlation coefficient:

Value of r	Interpretation	
$r \approx 1$	Strong positive correlation	
$r \approx O$	No linear correlation	
$r \approx -1$	Strong negative correlation.	

(a)
$$\bar{x} = \frac{\sum fx}{n}$$

(b) variance = σ^2
Frequency density = $\frac{frequency}{class width}$

PARKERMATHS.COM

$$x$$
 2
 3
 4
 5
 $P(X = x)$
 $2k$
 $6k$
 $12k$
 $20k$

$$40k = 1$$

 $k = \frac{1}{40}$ $P(X < 4) = \frac{8}{40} = \frac{1}{5}$

(a)
$${}^{n}C_{o} = 1$$

(b) ${}^{n}C_{1} = n$
(c) ${}^{n}C_{2} = \frac{1}{2}n(n-1)$
(d) ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

(a)
$$P(X = 4) = 0.188$$

(b) $P(X \le 2) = 0.398$
(c) $P(X > 5) = 0.0611$

PARKERMATHS.COM

For mutually exclusive events: $P(A \cap B) = O$ $\mathsf{P}(\mathcal{A} \cup \mathcal{B}) = \mathsf{P}(\mathcal{A}) + \mathsf{P}(\mathcal{B})$

PARKERMATHS.COM

PARKERMATHS.COM

<u>Constant</u> Probability

 \checkmark

Two <u>O</u>utcomes

<u>I</u>ndependent Events.

Fixed <u>N</u>umber of Trials PARKERMATHS.COM

> For independent events: $\mathsf{P}(\mathcal{A} \cap \mathcal{B}) = \mathsf{P}(\mathcal{A}) \times \mathsf{P}(\mathcal{B})$

PARKERMATHS.COM

PARKERMATHS.COM

 \checkmark

PARKERMATHS.COM

(?) Key Fact	(?) Key Fact	Correlation coefficient: Key Fact
Histograms:	(a) Mean in terms of f,x, and n.	Value of r Interpretation
Frequency density =	(b) Variance in terms of standard deviation.	$ \begin{array}{c} r \approx 1 \\ r \approx 0 \\ r \approx -1 \end{array} $
105 AS-L1	🕅 105 AS-L2	🕅 155 AS-L3
(?) Key Fact	X ~ B(15, 0.2) Technique	(?) Technique
4 criteria to model using	(a) $P(X = 4) =$	$P(X = x) = \begin{cases} kx(x-1) & \text{for } x = 2, 3, 4, 5 \\ 0 & \text{otherwise} \end{cases}$
the binomial distribution	(b) $P(X \le 2) =$	
	(c) $P(X > 5) =$	Find $P(X < 4)$
🕅 205 AS-M1	60s AS-M2	005 AS-M3
(?) Key Fact	(?) Key Fact	(a) ${}^{n}C_{o} =$ Key Fact
Condition for statistically	For mutually exclusive events:	(b) ${}^{n}C_{1} =$
independent events	$P(\mathcal{A} \cap \mathcal{B}) =$	(c) ${}^{n}C_{2} =$
	$P(\mathcal{A}\cup\mathcal{B})=$	$(d) C = \dots$
	10s AS-M5	305 AS-M6

$$v = u + at$$

$$v^{2} = u^{2} + 2as$$

$$s = \frac{1}{2}(u + v)t$$

$$s = ut + \frac{1}{2}at^{2}$$
PARKERMATHS.COM
$$x = \int v dt$$

$$v = \int a dt$$

$$v = \int a dt$$

$$v = u + at$$

$$v = \int a dt$$

$$v = \int a dt$$

$$v = u + at$$

$$v = \int a dt$$

$$v = u + at$$

$$u = u + a$$

(a) Formula for average speed (b) Formula for average velocity.	How are acceleration and distance represented on a velocity-time graph?	5 SUVAT equations
🕅 155 AS-Q1		♂ 30s AS-Q3
	Convert 2.57 hours into hours and minutes (nearest minute)	When g = 9.8 ms ⁻² , what is a suitable level of accuracy for your final answer?
105 AS-Q4 (?) A particle is thrown vertically upwards from a window 10m above the ground with speed 5 ms^{-1} . Find the time of flight. Use $g = 9.81 ms^{-2}$		$\mathcal{O} 55 \qquad AS-Q6$ $\mathcal{O} = \int \dots dt \qquad Key Fact$ $\mathcal{V} = \int \dots dt$ $x \text{ is displacement}$